Journal cover Journal topic
Ocean Science An interactive open-access journal of the European Geosciences Union

Journal metrics

  • IF value: 2.985 IF 2.985
  • IF 5-year<br/> value: 2.790 IF 5-year
    2.790
  • CiteScore<br/> value: 2.70 CiteScore
    2.70
  • SNIP value: 1.191 SNIP 1.191
  • SJR value: 1.885 SJR 1.885
  • IPP value: 2.589 IPP 2.589
  • h5-index value: 25 h5-index 25
Executive editors:
William
 
Jenkins
,
Eric J.M.
 
Delhez
 &
John M.
 
Huthnance

Ocean Science (OS) is an international open-access scientific journal dedicated to the publication and discussion of research articles, short communications, and review papers on all aspects of ocean science: experimental, theoretical, and laboratory. The primary objective is to publish a very high-quality scientific journal with free Internet-based access for researchers and other interested people throughout the world.


Highlight articles

A new method of observing ocean heat content throughout the entire ocean depth is provided. The new method is compared with simulated ocean heat content changes from climate models. The comparisons are carried out in various depth layers of the ocean waters. It is found that there is excellent agreement between the models and the observations. Furthermore, we propose that changes to ocean heat content be used as a fundamental metric to evaluate climate models.

L. Cheng, K. E. Trenberth, M. D. Palmer, J. Zhu, and J. P. Abraham

Lee waves play a significant role in ocean mixing but are difficult to study with traditional casts, moorings, and tows due to their stationary nature and limited spatial extent. We develop a new method to estimate turbulent diffusivity from seismic data and find elevated levels of turbulence associated with lee waves in the mid-water and around the seafloor that are 5 times greater than surrounding waters and 50 times greater than open-ocean diffusivities.

W. F. J. Fortin, W. S. Holbrook, and R. W. Schmitt

Regional sea surface height (SSH) changes due to an abrupt weakening of the Atlantic meridional overturning circulation (AMOC) are simulated with a high- and low-resolution model. A rapid decrease of the AMOC in the high-resolution version induces shorter return times of several specific regional and coastal extremes in North Atlantic SSH than in the low-resolution version. This effect is caused by a change in main eddy pathways associated with a change in separation latitude of the Gulf Stream.

S.-E. Brunnabend, H. A. Dijkstra, M. A. Kliphuis, B. van Werkhoven, H. E. Bal, F. Seinstra, J. Maassen, and M. van Meersbergen

We use ocean bottom-pressure measurements from 17 tropical sites to determine the annual cycle of ocean mass. We show that such a calculation is robust, and use three methods to estimate errors in the mass determination. Our final best estimate, using data from the best sites and two ocean models, is that the annual cycle has an amplitude of 0.85 mbar (equivalent to 8.4 mm of sea level, or 3100 Gt of water), with a 95% chance of lying within the range 0.61–1.17 mbar.

Joanne Williams, C. W. Hughes, M. E. Tamisiea, and S. D. P. Williams

The Atlantic meridional overturning circulation comprises warm upper waters flowing northward, becoming colder and denser until they form deep water in the Labrador and Nordic Seas that then returns southward through the North and South Atlantic. The ocean heat transport associated with this circulation is 1.3 PW, accounting for 25% of the maximum combined atmosphere–ocean heat transport necessary to balance the Earth's radiation budget.

H. L. Bryden, B. A. King, G. D. McCarthy, and E. L. McDonagh

Recent articles

News

New institutional agreement between the TU Darmstadt and Copernicus Publications

27 Dec 2016

Authors from the Technical University Darmstadt will profit from a new institutional agreement with Copernicus Publications starting 1 January 2017. The agreement which is valid for corresponding authors enables a direct settlement of article processing charges (APCs) between the university and the publisher.

Max Planck institutional agreement now for corresponding authors

23 Dec 2016

As of 1 January 2017 the direct settlement of article processing charges (APCs) between the Max Planck Digital Library and Copernicus Publications will be valid for corresponding authors.

Geographical distribution of views now available in journal ALMs

08 Sep 2016

Copernicus Publications has extended the article level metrics (ALMs) by showing the geographical distribution of views. This information is available for articles published after 3 August 2016.

Publications Copernicus